Involvement of heme in the degradation of iron-regulatory protein 2.
نویسندگان
چکیده
Iron-regulatory proteins (IRPs) recognize and bind to specific RNA structures called iron-responsive elements. Mediation of these binding interactions by iron and iron-containing compounds regulates several post-transcriptional events relevant to iron metabolism. There are two known IRPs, IRP1 and IRP2, both of which can respond to iron fluxes in the cell. There is ample evidence that IRP1 is converted by iron to cytoplasmic aconitase in vivo. It has also been shown that, under certain conditions, a significant fraction of IRP1 is degraded in cells exposed to iron or heme. Studies have shown that the degradation of IRP1 that is induced by iron can be inhibited by either desferrioxamine mesylate (an iron chelator) or succinyl acetone (an inhibitor of heme synthesis), whereas the degradation induced by heme cannot. This suggests that heme rather than iron is responsible for this degradation. Several laboratories have shown that IRP2 is also degraded in cells treated with iron salts. We now show evidence suggesting that this IRP2 degradation may be mediated by heme. Thus, in experiments analogous to those used previously to study IRP1, we find that IRP2 is degraded in rabbit fibroblast cells exposed to heme or iron salts. However, as shown earlier with IRP1, both desferrioxamine mesylate and succinyl acetone will inhibit the degradation of IRP2 induced by iron but not that induced by heme.
منابع مشابه
Heme induces ubiquitination and degradation of the transcription factor Bach1.
The transcription repressor Bach1 is a sensor and effector of heme that regulates the expression of heme oxygenase 1 and globin genes. Heme binds to Bach1, inhibiting its DNA binding activity and inducing its nuclear export. We found that hemin further induced the degradation of endogenous Bach1 in NIH 3T3 cells, murine embryonic fibroblasts, and murine erythroleukemia cells. In contrast, succi...
متن کاملThe role of endogenous heme synthesis and degradation domain cysteines in cellular iron-dependent degradation of IRP2.
Iron regulatory protein 2 (IRP2) is a mammalian cytosolic iron-sensing protein that regulates expression of iron metabolism proteins, including ferritin and transferrin receptor 1. IRP2 is ubiquitinated and degraded by the proteasome in iron-replete cells but is relatively stable in iron-depleted cells. Recent work has shown that IRP2 contains a unique 73-amino-acid domain that binds iron in vi...
متن کاملHeme is an effector molecule for iron-dependent degradation of the bacterial iron response regulator (Irr) protein.
The bacterial iron response regulator (Irr) protein mediates iron-dependent regulation of heme biosynthesis. Pulse-chase and immunoprecipitation experiments showed that Irr degraded in response to 6 microM iron with a half-life of approximately 30 min and that this regulated stability was the principal determinant of control by iron. Irr contains a heme regulatory motif (HRM) near its amino ter...
متن کاملEffect of whey protein coating on Physic-Chemical properties of gutted Kilka during frozen storage
The a im of th is paper was to study the effects w hey pro t e in c oat i ng on ch e m ic al a nd physic al properties of gut t ed K i l ka dur i ng f roz en stor a ge. Coating of Kilka has done by dipping in whey protein solution with different concentrations of 3, 7, 10 and 13%, for 1h. Then, after being packed in polyethylene dishes, they were covered in cellophane blanket and stored in -18...
متن کاملA novel heme-regulatory motif mediates heme-dependent degradation of the circadian factor period 2.
Although efforts have been made to identify circadian-controlled genes regulating cell cycle progression and cell death, little is known about the metabolic signals modulating circadian regulation of gene expression. We identify heme, an iron-containing prosthetic group, as a regulatory ligand controlling human Period-2 (hPer2) stability. Furthermore, we define a novel heme-regulatory motif wit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 273 20 شماره
صفحات -
تاریخ انتشار 1998